Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.12.13.22283434

ABSTRACT

BACKGROUND AND AIMS: Vaccine-mediated immune responses in patients with inflammatory bowel disease (IBD) may be influenced by IBD therapies. We investigated in-depth humoral and T-cell responses to SARS-CoV-2 vaccination in IBD patients following three COVID-19 vaccine doses. METHODS: Immune responses of 100 SARS-CoV-2-uninfected IBD patients on varying treatments were compared to healthy controls (n=35). Anti-S1/2 and anti-RBD SARS-CoV-2-specific antibodies, CD4+ and CD8+ T-cell responses were measured at baseline and at five time-points after COVID-19 vaccination. RESULTS: Anti-S1/2 and anti-RBD antibody concentrations at ~1 month after second dose vaccination were significantly lower in anti-TNF-treated patients compared to non-TNF IBD patients and healthy controls (126.4 vs 262.1 and 295.5, p<0.0001). Anti-S1/2 antibodies remained reduced in anti-TNF treated patients before and after the third dose (285.7 vs 365.3, p=0.03), although anti-RBD antibodies reached comparable titres to non-TNF patients. Anti-RBD antibodies were higher in the vedolizumab group than controls after second dose (4.2 vs 3.6, p=0.003). Anti-TNF monotherapy was associated with increased CD4+ and CD8+ T-cell activation compared to combination anti-TNF patients after second dose, but comparable after third dose. Overall, IBD patients demonstrated similar CD4+/CD8+ T-cell responses compared to healthy controls regardless of treatment regimen. CONCLUSIONS: Anti-TNFs impaired antibody concentrations when compared to non-TNF patients and controls after two vaccine doses. These differences were not observed after the third vaccine dose. However, vaccine induced SARS-CoV-2-specific T cell responses are robust in anti-TNF-treated patients. Our study supports the need for timely booster vaccination particularly in anti-TNF treated patients to minimise the risk of severe SARS-CoV-2 infection.


Subject(s)
COVID-19 , Inflammatory Bowel Diseases
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.17.20176370

ABSTRACT

An improved understanding of human T-cell-mediated immunity in COVID-19 is important if we are to optimize therapeutic and vaccine strategies. Experience with influenza shows that infection primes CD8+ T-cell memory to shared peptides presented by common HLA types like HLA-A2. Following re-infection, cross-reactive CD8+ T-cells enhance recovery and diminish clinical severity. Stimulating peripheral blood mononuclear cells from COVID-19 convalescent patients with overlapping peptides from SARS-CoV-2 Spike, Nucleocapsid and Membrane proteins led to the clonal expansion of SARS-CoV-2-specific CD8+ and CD4+ T-cells in vitro, with CD4+ sets being typically robust. For CD8+ T-cells taken directly ex vivo, we identified two HLA-A*02:01-restricted SARS-CoV-2 epitopes, A2/S269-277 and A2/Orf1ab3183-3191. Using peptide-HLA tetramer enrichment, direct ex vivo assessment of the A2/S269+CD8+ and A2/Orf1ab3183+CD8+ populations indicated that the more prominent A2/S269+CD8+ set was detected at comparable frequency ([~]1.3x10-5) in acute and convalescent HLA-A*02:01+ patients. But, while the numbers were higher than those found in uninfected HLA-A*02:01+ donors ([~]2.5x10-6), they were low when compared with frequencies for influenza-specific (A2/M158) and EBV-specific (A2/BMLF1280) ([~]1.38x10-4) populations. Phenotypic analysis ex vivo of A2/S269+CD8+ T-cells from COVID-19 convalescents showed that A2/S269+CD8+ T-cells were predominantly negative for the CD38, HLA-DR, PD-1 and CD71 activation markers, although the majority of total CD8+ T-cells were granzyme and/or perforin-positive. Furthermore, the bias towards naive, stem cell memory and central memory A2/S269+CD8+ T-cells rather than effector memory populations suggests that SARS-CoV2 infection may be compromising CD8+ T-cell activation. Priming with an appropriate vaccine may thus have great value for optimizing protective CD8+ T-cell immunity in COVID-19.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL